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Two approaches have been used to study the torsion effect on the fully developed 
laminar flow in a helical pipe of constant circular cross-section. The first approach 
is the series expansion method that perturbs the Poiseuille flow and is valid for low 
Dean numbers with both the dimensionless curvature and dimensionless torsion being 
much less than unity. The second is a numerical procedure that solves the complete 
Naviedtokes equation and is applicable to intermediate values of the Dean number. 
The results obtained indicate that, as far as the secondary flow patterns are concerned, 
the presence of torsion can produce a large effect if the ratio of the curvature to the 
torsion is of order unity. In these cases the secondary flow, though still consisting 
of a pair of vortices, can be very much distorted. Under extreme conditions one vortex 
is so prevalent as to squeeze the second one into a narrow region. However, ordinarily 
the torsion effect is small and the secondary flow has the usual pattern of a pair of 
counter-rotating vortices of nearly equal strength. Concerning the flow resistance in 
the pipe the effect of torsion is always small in all the circumstances that have so 
far been considered. 

1. Introduction 
Although extensive studies have been made on flows in a toroidally curved pipe, 

comparatively little is known about the flows in a helical pipe. Even for a fully 
developed flow in the low-Reynolds-number regime, controversy exists. For instance, 
the recent papers by Wang (1981) and Germano (1982) reached different conclusions 
after analysing the problem. The former states that both curvature and torsion 
produce a first-order effect and the influence of torsion can be so dominant in some 
cases as to reduce the commonly occurring two-cell secondary flow to a single vortex, 
whereas the latter states that only curvature can cause the first-order effect and the 
effect of torsion is of second order. 

In an attempt to settle these differences, we have re-examined this problem of a 
helical pipe using two different methods: the series expansion method, which is similar 
to the ones used by Wang and Germano; and the numerical computation of the 
complete Naviedtokes equations. 

The conclusion reached from the series expansion methods indicates that although 
torsion cannot produce a first-order effect, its presence can give rise to half-power 
terms, if an additional condition, that the order of magnitude of the dimensionless 
torsion h is the same as that of the square root of the dimensionless curvature B ,  is 
met. Under these conditions the leading term of torsion is of the 1; power of the 
perturbation parameter, which is the halfway between first and second order. If this 
condition is not imposed, the governing equations reduce to those given by Germano 
and the effect of torsion is relegated to second or higher order. 
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To complement the series expansion analysis and to investigate flows a t  moderately 
high Dean numbers, numerical computations of the full Navier-Stokes equations 
were also carried out. When the dimensionless curvature, which will be defined later, 
becomes relatively large, say 0.2 < 8 < 0.5, the method of series expansion about the 
Poiseuille flow is no longer applicable even for small Dean numbers, and recourse to 
numerical calculations will have to  be made. The results obtained in these cases for 
both small and moderately high Dean numbers seem to show that a small torsion 
may cause a significant change in the secondary flow pattern, and the aforementioned 
condition that A = O ( 2 4  is no longer required. Furthermore, the change appears to 
be more pronounced as the Dean number becomes larger. 

Although torsion can radically change the pattern of the secondary flow in a helical 
pipe, its influence on the volume flux ratio is relatively minor. For small values of 
the Dean number and based on the series expansion analysis, i t  is shown that the 
flux ratio remains unchanged compared with that of a curved pipe (Dean 1928) until 
the 2?j-power term. For an intermediate range of the Dean number, the numerical 
results obtained lend support to the suggestion made by Truesdell & Adler (1970) 
that  the flux-ratio formula for a curved pipe is also applicable to a helical pipe if the 
curvature of the latter is used in place of that  of a curved pipe. A similar conclusion 
was also reached by Murata et al. (1981)) though they used somewhat simplified basic 
equations which assumed that the dimensionless curvature was small and the 
higher-order terms of curvature were neglected. 

A comprehensive survey by Berger, Talbot & Yao (1983) on flow in curved pipes 
is now available, and so no mention will be made here of the available literature on 
previous work. However, after reading that survey, one is somewhat at a loss to 
discover that there are only four papers cited on the subject of helical pipes, 
notwithstanding their many applications, compared with over a hundred on toroid- 
ally curved pipes. We thus venture an attempt at an explanation. 

Although a helical pipe involves an  additional parameter compared with the curved 
pipe, which naturally increases its complexity, the main reason for the slow progress 
may stem from the need to use a non-orthogonal coordinate system for a helical pipe. 
The fact that the governing differential equations written in the non-orthogonal 
coordinates contain so many more terms than their counterparts in the orthogonal 
coordinates makes analysis or numerical calculation unwieldy and impedes progress 
considerably. Fortunately, this difficulty has been largely overcome by Germano, 
who introduced an ingenious transformation, rendering the governing differential 
equations for a helical pipe with circular cross-section expressible in orthogonal 
coordinates. The advantage is not only the simplification of the basic equations but 
also i t  makes the comparison with that of a curved pipe much clearer. Without this 
transformation, a rather severe approximation is needed to  place an orthogonal 
coordinate system on a helical pipe. For instance, the requirement of a very small 
pitch in Manlapaz & Churchill (1980) accomplishes this purpose but at the same time 
reduces the problem to essentially that of a toroidally curved pipe. 

The present study concerns steady laminar flow in a helical pipe of circular 
cross-section for small and intermediate values of the Dean number. Thus this paper 
is divided approximately into two parts. The first part is based on the method of series 
expansion applicable to  small values of the Dean number along with the assumption 
that the pipe has only slight curvature and torsion. The second part deals with the 
numerical solution of the Navier-Stokes equations and is applicable to intermediate 
values of the Dean number. The flow is assumed to  be fully developed. 
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2. Governing equations and formulation of the problem 
The present coordinate system is that used by Germano (1982) and is depicted in 

figure 1. The centreline of a helical pipe is referred to as s’ along which the unit tangent 
vector T is defined. The normal and binormal vectors are N and B respectively. A 
point E in the pipe is defined by a Cartesian position vector R which is a function 
of the local coordinate system (s’, r ’ ,  0) and is given by 

( 1 )  

Note that this expression is somewhat different from that of Germano, because a 
right-handed helix is considered here instead of a left-handed one so that it reduces 
to the coordinate system adopted by McConalogue & Srivastava (1968) and others, 
when the torsion approaches zero. 

R = Ro(s’)-r’ cos (6+$) N(s’)+r’ sin (e+$)B(s’) .  

Using the Serret-Frenet equations of a curve 

dB 
= TB-KT, - 

d N  d T  
ds’ ds’ -=KN, - dst = -TN,  

and the relationship 
dR 1 d T  
ds’ ’ K ds” 

T = J  N=--  B = T x N  

one can determine the metric of this system by first obtaining a total differential of 
the position vector 

dR = ds’[l+Kr’cos(S+$)] T+dr’a,+r’dBa,, 

and then taking the scalar product 

dR dR = [ 1 + K?” cos (0 + $)I2 dd2 + drj2 + r f2  do2. (2) 

Here K and T are the curvature and torsion. a, and a, are two new vectors defined 
as follows : a, = sin(B+$)B-cos(B+$)N, 

a,= cos(O+$)B+sin(@+$)N, 

to render the coordinate system orthogonal. In  addition, the angle $ is defined as 

8 ,  

$(4 = s,, T ( S )  dsi 

and is therefore a function of s’. The lower limit si is arbitrary as long as s’ 2 si. 
With the orthogonal metric available, we can write the Navier-Stokes equations 

for a steady incompressible flow in the coordinates s’, r ’ ,  8 together with the geometric 
parameters K, T and $ as follows: 

aw  au u i a v  
as ar’ r T’ a0 

w,+-+,+--+Kw[cos(8+$) U-sin(O+$) V ]  = 0, 

DW+KWW[COS(~+$) U-sin(e+$) v] = -w7+v  -+, 
as ap [c 3 

(3) 
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X 

FIGURE 1.  Depiction of a helical pipe and the coordinate system. 

In  these expressions U,  V and W are the velocity components in the a,, a, and T 
directions respectively, and are functions of s‘, r’, and 8 + $ ;  p is the pressure, v the 
kinematic viscosity, and D and w are 

In  a fully developed flow U ,  V ,  W are assumed to be independent explicitly of s‘ 
but they can still be dependent on it implicitly, as shown by Germano, through the 

where f is an arbitrary function referring to the dependent variables. Furthermore, 
with the assumption of a fully developed flow and from (4) p can be written in the 
following form : 

G 

P 
p = --s’+p&’,O+g), 

where G is a constant and p is the density of the fluid. This implies that the pressure 
gradient along the pipe centreline is now a constant (see, for example, McConalogue 
& Srivastava). 

We now follow the usual steps to eliminate the pressure terms in ( 5 )  and (6) by 
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cross-differentiation, and at  the same time define the Dean number D 
following dimensionless variables : 

r’ a a 
r = - ,  e = a ~ ,  A = a r ,  u=-U, v = - V ,  

a V V 

Here the equality for p ,  in the last line is merely an example and holds true 
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and the 

(7) 

for other 
dependent -variables. u-refers to the radius of the  pipe, and 52 is the dimensionless 
vortieity for the secondary flow and appears as the dependent variable in the vorticity 
transport equation. 

The necessary differential equations for the problem are now available and are 
shown in Appendix A. To solve the problem, we impose the no-slip condition a t  the 
pipe wall 

u=v=w=O a t r = l ,  

or the equivalent condition for the vorticity, together with the requirement that all 
flow quantities are regular at r = 0. 

(8) 

3. Series expansions for small-Dean-number flows 
The governing equations shown in Appendix A can be substantially simplified, as 

shown in the following, if it is assumed that u, v and w are of the same order of 
magnitude, and e + 1, h 4 1, and hl(2e)f  = O(1) : t  

1 a i a  
v252 --us2 -- (ua) -- - (VQ) 

r ar r aa 

I a52 iawau awav 
aa ( aa r aa aa ar aa 

aw 1 
= w  sina-+-cosa- +@ w-----+-- , (11)  ( ar r 

where a = 8+$, @ = A / ( B e ) f  and 

Equations (9)-(11) are the continuity, the axial momentum and the vorticity 
transport equations respectively. This system shows that even for a loosely coiled 
pipe with both E and h much less than unity the effect of pitch (torsion) on the pipe 

t The assumption that these velocity components are of the same order of magnitude holds 
generally true for the intermediate range of the Dean numbers. At low Dean numbers u and 2, are 
usually much smaller than w. This diminution in magnitude of u and v does not, however, invalidate 
the approximation. 
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flow need not be negligible as long as the ratio fl  remains finite. However, if the 
condition that @ = O( 1 )  is dropped and @ Q 1 ,  (9)-( 1 1 )  reduce to Dean's classical 
form as was shown in German0 (1982). In  this case torsion can only exert a 
second-order effect on flows in a helical pipe. 

We now solve (9)-( 11)  together with the boundary condition (8) by means of a series 
expansion method. Before doing this i t  is convenient to convert the present 
dimensionless quantities to  those given by Dean, so that a direct comparison can be 
made. The relationship is very simple and is given by 

u = E ,  v = V ,  w=:DZ, a = a ,  lqD=Ki, 

where the quantities with bars denote Dean's variables, and K is the original Dean 
number defined by Dean. With these new variables, (9)-( 1 1 )  assume the form 

where the bars over u, v and 52 have been dropped, since these variables are the same. 
Upon introduction of a modified stream- function @ to 

equation (12), which is similar to the one used by Hamed & 

J 
this system reduces to (16) and (17) as shown below. They 
to those of Dean and become Dean's equation if #3 = 0. 

replace the continuity 
Abdallah (1979), 

bear close resemblance 



Torsion effect on fully developed $ow in a helical pipe 34 1 

The boundary conditions for these equations are 

along with the condition that $ and 'zli are regular at r = 0. Note that the angle a 
is still equal to 8+$ .  However, in a fully developed flow is arbitrary and can be 
regarded as zero. 

This system is solved for small values of the Dean number K by expanding the 
dependent variables in powers of K :  

- 
w = W,+KW,+GW,+K~W~+~W~+ ...,'I 

(19) 
$ = +o+ ~ $ 1 + ~ $ 2  + ~ 2 9 3 + ~ ~ $ 9 +  . . . . J 

The appearance of the half-power terms here is the consequence of the non-zero p 
in (16) and (17). 

As usual, the leading terms for w and $ are the straight-pipe Poiseuille flow 
solutions that are 

wo = l - r 2 .  

The first-order terms can then be solved, which are 

$o = 0, 

$, = &(r-ir3++r5-ir7) sina,  

w, = & ( 9 - r 3 + 3 5 - + 7 + & r 9 )  cosa. 

Up to  this order, solutions are identical with Dean's. I n  order to  see the effect of the 
pitch, we carry out the solutions to the order of G in detail. For this the governing 
differential equations are 

The boundary conditions for this system a t  r = 1 are 

277 
7 x 990 COsa- 

The solutions to  (20) and (21) are straightforward and assume the form 

@ 2 = m  @ ( - g r  + gr3- gr5 + 3 7  -w + cos a, (22) 

@ w 2 -- - 4 576 ( ~ + ~ r z - ~ 4 + ~ 6 - ~ r 8 + ~ 1 0 - ~ r 1 2 )  

x cosa+- ' (-r -#r3 + Er5 - &r7 +&y9 -&ll + &13) sin a. (23) 

It is evident from these solutions that although the appearance of O(&)-terms 
makes no contribution to  the flow rate t o  this order, the distribution of the axial 

4 x 576 118800 
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velocity component w and the secondary flow patterns will be different from those 
of a curved pipe. I n  particular, the patterns will no longer be symmetrical. 

This process of solving higher-order terms presents no difficulty and can continue, 
except that i t  becomes increasingly laborious. Solutions for $3 and w3 have also been 
obtained and are shown in Appendix B. 

Turning our attention now to the global property of a helical pipe, we define the 
volume-flux ratio as 

= Jo2' 5,' @r dr da,  
QS 

where Q denotes the flux in a helical pipe and Qs the flux in a straight pipe for the 
same pressure gradient as that  in a helical pipe. It turns out that the expression for 
the flux ratio to  the order of K 2  is identical with that for a curved pipe. Thus, to this 
order torsion does not affect the flow rate in a helical pipe. This is in agreement with 
the conclusion reached by Wang (1981). We thus have to obtain the next 
approximation in (19) in order to see the influence of torsion. This may be done 
without solving w4 completely, since only the part of the solution that does not 
involve the trigonometric functions makes a contribution to the flux. After this 
process is carried out, the ratio becomes 

' = 1-0.03058 - -0.06816 @ - + . . . . 
- Qs (:6)1 (:6y 

As is seen, the first two terms are the same as those given by Dean, which are for 
a curved pipe. The third term contains the parameter /3, which brings in the effect 
of torsion. 

Previous investigations show that the series solution of the flow rate for a curved 
pipe is valid for K < 576 ( D  < 96). Since the coefficient in the third term of (24) is 
somewhat larger than that in the preceding term, the radius of convergence may be 
considerably smaller than that of a curved pipe. The anomaly in figure 2(a) to  be 
stated later may actually reflect this property. The question of convergence cannot, 
however, be answered here because of an insufficient number of terms. Extension to 
higher-order terms by computer, similar to what was done by Larrain & Bonilla 
(1970) or Van Dyke (1978), should be possible. When this is done, the range of 
convergence may be examined. However, comparison of solutions to (24) with those 
by numerical calculations seems to indicate that the range of applicability of (24) is 
still approximately K < 576. 

4. Graphic illustration and discussion of series solution 
The secondary streamlines and the axial velocity patterns for laminar flows in a 

toroidally curved pipe are all symmetric with respect to the central plane. The 
presence of torsion in a helical pipe makes these patterns asymmetric, beginning with 
terms of O ( @ ) .  Therefore, it is assumed that the degree of asymmetry in the 
secondary flow patterns reveals directly the extent of the torsion effect. 

The customary method of displaying the secondary flow patterns is to plot the 
secondary streamlines. This method is, however, not convenient here, since the 
stream function defined in (15) is not a true stream function. Instead, the resultants 
of u, v velocity components at the pipe cross-sections are shown. These represent then 
the projected velocity vectors or the cross-flow vectors. 

I n  order to facilitate discussion we present here not only the secondary flow 
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FIQURE 2. Vector plot of the secondary flow. (a) D = 80, @=0.5 (series solution). ( b )  D = 80, 
B = 0.005, A = 0.05, = 0.5 (numerical solution). 

patterns from the series expansion but also those obtained by a numerical method, 
which will be discussed in more detail later. 

Shown in figure 2 (a) are the cross-flow vectors based on the solutions of (19). These 
vectors are stretched or reduced by an arbitrary constant so that pictures are legible 
and details are not masked. The relative magnitude is, of course, unaltered. This 
technique is also used for every velocity-vector plot hereafter. 

At  first glance it appears that the series solution in figure 2 (a) is in error, since there 
is an inflow to the lower half but no outflow from there. However, since this is not 
exactly a convergent solution some local anomaly may be expected. To ascertain that 
this is the case, another cross-flow vector plot is included, figure 2 ( b ) ,  which is 
obtained numerically under similar conditions, with E = 0.005, and A = 0.05 to meet 
the requirement that E 6 1 and h 6 1 .  It is seen by overlaying these two figures that 
the velocity vectors fall almost on top of each other except in the area near the centre, 
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FIGURE 3. Contour lines of the streamwise velocity component corresponding to the two cases in 
figure 2. (The indicated values are the dimensionless quantity w defined in (7).) (a) D = 80, /$ = 0.5 
series solution. (b) D = 80, E = 0.005, h = 0.05, @ = 0.5 (numerical solution). 

where the anomaly of the series solution occurs. The numerical solution displays 
upward velocity vectors near the centre, which provide the outflow needed for the 
lower half. In  addition, the dividing line between the two counter-rotating vortices 
in figure 2 ( b )  appears to  have rotated approximately 25" upward compared with that 
in a curved pipe, which is the dotted line on the central plane. If the main flow in 
a helical pipe moves in the clockwise direction about the axis of the helix coil, as 
opposed to  the counterclockwise here, this dividing line is expected to  be shifted 
downward. 

Accompanying the cross-flow plots are the axial velocity contour lines plotted in 
figure 3 (a, b ) .  These are obtained under the same conditions as in figure 2. As seen, 
these patterns are also asymmetric with the peak velocities shifted north-eastward, 
though the shift in the numerical solution is less pronounced. This implies that  the 
secondary flow in a helical pipe transports the fluid particles both away from the inner 
wall and upward if the main flow moves in the counterclockwise direction. 

Next we show in figures 4 and 5 two cross-flow plots to demonstrate that as /3 
decreases the asymmetry of the flow pattern diminishes (figure 4) ,  and that the 
secondary flow for D < 30 is always nearly symmetric i f p  is less than unity (figure 
5). Note that although these two plots are based on the solutions of (19), two 
numerical calculations were also performed to  check their accuracy by fixing E to be 
0.05 and adjusting h to make the /3 equal to  those in figures 4 and 5. The results were 
found to  agree fairly well with those from (19), except for the central anomaly. Thus 
there is incomplete agreement between the series and numerical solutions even a t  a 
Dean number as low as 30. 

The remarks that a small ,3 or a small D results in a nearly symmetric profile are 
only valid under the conditions that E 4 1 and h 4 1. If E is not small, neither of these 
statements holds. To confirm these claims, two additional figures, 6 and 7, are 
included. These are the profiles from two numerical calculations choosing an 
intermediate value of E ,  corresponding to p = 0.0067 and 0.168. Although these B are 
much smaller than those in figures 4 and 5, the secondary-flow profiles are still fairly 
asymmetric. This seems to  imply that the importance of torsion is greatly enhanced 
by the curvature and its nonlinear interactions. 

We now examine the flux ratio in helical pipes with moderately high dimensionless 
curvatures. It is found that the previous conclusion of a higher-order effect of torsion 
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FIGURE 4. Vector plot of the secondary flow at D = 80, $ = 0.25 (series solution). 

FIGURE 5. Vector plot of the secondary flow at D = 30, $ = 0.5 (series solution). 

is still valid. To demonstrate this point, we quote the computed flux ratios obtained 
from two numerical runs : 

_ -  - 0.9827 with D = 80, E = 0.4, A = 0 (curved pipe); 
QS 

Q 
- = 0.9978 with D = 80, E = 0.4, A = 0.25 (helical pipe). 
QS 

Note that the flux ratio in a helical pipe is somewhat larger than the flux ratio in a 
curved pipe for the same Dean number. This seems to be true in general irrespective 
of the Dean number and curvature ; examples will also be given later for moderately 
high-Dean-number cases to demonstrate this property. Thus, it follows that for the 
same curvature and Dean number the effect of the torsion is to reduce the resistance 
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- -  
c 

FIGURE 6. Vector plot of the secondary flow at D = 80, E = 0.4, h = 0.06, p = 0.0067 
(numerical solution). 

FIQURE 7. Vector plot of the secondary flow at D = 30, E = 0.4, h = 0.15, p = 0.168 
(numerical solution). 

in the pipe. For very small Dean numbers, the resistance in a curved pipe can actually 
be less than that in a straight pipe (Larrain & Bonilla 1970). If the torsion effect 
is added to the problem, this cross-over point will perhaps occur sooner. 

The many numerical examples obtained by integrating the full Navier-Stokes 
equations for small Dean numbers from small to moderately large curvatures, seem 
to reveal the property that the position of the peak axial velocity component is 
influenced more by the curvature than by the torsion. For instance, when the 
curvature is small, its position is generally in the north-eastern quadrant. However, 
as the curvature increases, it moves gradually to the west and may end up in the 
north-western quadrant as shown in figure 8. 

The configuration shown in Wang’s (1981) paper, in which a pair of vortices 
eventually evolve to a single vortex as the torsion parameter increases, has not been 
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FIGURE 8. Contour lines of streamwise velocity component at D = 80, B = 0.4, A = 0.25 
(numerical solution). 

found here for small Dean numbers. It is not certain whether this would happen in 
the range of intermediate Dean numbers. However, in the latter case one vortex can 
appear substantially smaller than the other, as will be shown later. 

5. Finite-difference procedures for intermediate Dean numbers 
For intermediate Dean numbers i t  is necessary to solve the problem numerically. 

The governing differential equations are the full Navier-Stokes equations, (A 2)-(A 4) 
in Appendix A. The resulting governing equations, though more complicated, are 
similar to (16) and (17), except that  the vorticity 52 is retained as a dependent variable 
instead of the modified stream function in (17). 

Finite-difference numerical solutions were carried out by using the power-law 
scheme of Patankar (1979) ; however, the method of quadratic upstream differencing 
(QUICK) of Leonard (1979) was also used for some of the solutions to compare the 
relative accuracy of these two methods. The computational procedure for the latter 
method was essentially that of Han, Humphrey & Launder (1981) with some changes 
made to achieve the stability needed. Since these procedures are established and well 
documented, no details are necessary here. It suffices to say that all calculations were 
implemented on a uniformly spaced grid system, covering the computational domain 
of a unit circle. The resulting finite-difference equations are solved by the line 
relaxation method with an under-relaxation factor and by sweeping in the increasing 
angular directtion. The sequence of calculation in one iteration cycle is to solve (A 4) 
first and then (A 2) and (A 3), always using the most recent approximation to  a 
variable. This process is repeated until the changes in two consecutive iterations for 
every dependent variable are less than the specified tolerance criteria. 

Equations (A 2)-(A 4) are valid for r > 0. The singularity at T = 0 is caused by the 
particular choice of the coordinate system and can be removed by recasting the 
equations locally into Cartesian coordinates. At first glance this process does not seem 
to be optimum, since there are better techniques available to  deal with this singularity 
(see, example, Soh & Berger 1984). However, in most cases a special treatment is still 
needed a t  r = 0, which calls for an average of flow quantities at r = 0. Writing the 
governing equation into a finite-difference form at r=O in terms of the local 
Cartesian coordinates may then be viewed as an alternative method of obtaining 
these averaged quantities. 

12 F L X  184 
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Before carrying out calculations for various conditions, we tested computational 
accuracy by comparing results predicted by the power-law method with thosr: by 
QUICK and by making a grid-refinement study based on the former method. 

Since the power-law method is essentially a first-order upwind scheme, i t  is liable 
to false diffusion when streamlines are oblique to  grid lines. However, secondary 
streamlines are mostly aligned with the grid lines (except in the region where the two  
streams converge or diverge strongly), and the effect of false diffusion is not expected 
to be large. To substantiate this conjecture, we used the QUICK method since it is 
known that this method - though less stable - can reduce false diffusion. Several 
solutions were then obtained by both methods and comparisons were made. For the 
cases computed with D < 2000, the difference was found to be small. 

A grid-refinement study was next carried out to  determine an adequate grid 
distribution for the problem. The number of grid points in the radial direction of a 
unit circle was increased from 21 to 41 and finally to 81 points. As the Dean number 
increases, the variation of flow properties near the pipe surface also increases and the 
grid spacing in the radial direction has to be decreased accordingly. I n  order to show 
the difference between a coarse and a fine grid, a numerical comparison is given here. 
This is done by utilizing the root-mean-square residuals (RMSR) formula for the 
secondary-flow stream functions in a curved pipe with D = 2000 and 8 = 0.2: 

where $ij is the secondary-flow stream function with a grid distribution of either 
21 x 72 or 41 x 72 points, and $ij  is that with a grid distribution of 81 x 72 points. 
Since we compare only these quantities a t  points of the coarsest grid, M and N are 
equal to  21 and 72 respectively. The results obtained are 0.0520 between grids of 
21 x 72 and 81 x 72 points, and 0.0144 between those of 41 x 72 and 81 x 72 points. 
I n  view of the relatively small difference in the second case, a grid spacing of 41 x 72 
points was selected for calculations for the intermediate Dean numbers and 21 x 72 
points otherwise. No investigation was, however, made for selecting grid spacing in 
the angular direction, since flow angular variations for different Dean numbers are 
generally small and a point in every 5" seemed to  be sufficient. 

6. Results and discussion 
For flows in a helical pipe there are two parameters E and h in addition to the Dean 

number. This can result in a large number of combinations. However, i t  appears that  
the general characteristics of the flow for various Dean numbers in the range we have 
covered remain basically unchanged, except that  the intensities are different. Thus, 
to eliminate repetition most of the calculated results that  we present here are for 
D = 2000 with only a few remarks made on flows at other Dean numbers, although 
numerical computations were actually carried out in the whole range up to  D = 5000. 

I n  order to  see what the effect of torsion on the secondary flow pattern, we present 
a case of tightly coiled pipe with 8 = 0.5 in figure 9. There are two plots in this figure 
to depict the secondary flow vectors : figure 9 (a )  is for a curved pipe, and figure 9 ( b )  
is for a helical pipe with A = 0.1. The secondary flow pattern in the latter is highly 
asymmetric and much distorted compared with the symmetric pattern in figure 9 (a). 
In  particular, the upper vortex is squashed and becomes much smaller than the lower 
one, although the core regions for these two vortices remain approximately in the 
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FIGURE 9. Vector plot of the secondary flow. (a) D = 2000, B = 0.5, A = 0 (numerical solution). 
( b )  D = 2000, B = 0.5, A = 0.1 (numerical solution). 

same locations as in figure 9(a). This suggests perhaps that the secondary flows in 
these two cases transport the fluid particles in a similar manner, which is reflected 
in the contour lines for the axial velocity components as illustrated in figure 10, which 
are seen to be similar. Consequently, the flux ratios are expected to be nearly equal 
in these two cases. This turns out to be true in general. A numerical example will 
be given later to substantiate this statement. 

Before we proceed further, it is perhaps worth mentioning the meaning of the 
parameters. With reference to figure 1, the pitch is shown to be 2xb, and the curvature 
K and the torsion 7 are defined as 

b 
T = -  

C 
K = -  

b2+c2’  b2+c2’  

The corresponding dimensionless quantities are then 

b 
h = -€. 

C b c = K a = -  h = T a = -  
b2 + cZa’ b2 + cZa’  C 

12-2 
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FIGURE 10. Contour lines of the streamwise velocity component corresponding to the two cases 
in figure 9. (a) D = 2000, E = 0.5, h = 0 (numerical solution). (b)  D = 2000, E = 0.5, h = 0.1 
(numerical solution). 

It is seen that if e = 0.5 and A = 0.1, the ratio b / c  = 0.2, which represents a helical 
pipe of a fairly large pitch equal to approximately 1.2 times the radius of the pipe 
curvature. Thus, as the curvature decreases, the torsion must also decrease in order 
to maintain the ratio b/c constant. 

Thus far the results obtained seem to indicate that the secondary flow patterns 
are controlled more by the ratio of h to E than by the individual parameters. To 
illustrate this, we include two secondary-flow vector plots in figure 11.  Although 
E and h in figure 11 ( a )  are both smaller than those in figure 9(b), the ratios A / €  are 
comparable and the patterns are similar. (The vectors in figures 9(b) and 11 (a)  are 
adjusted by the same factor.) However, if E is held constant and h is reduced to 0.02, 
the ratio A l e  becomes smaller, the flow pattern in figure 11 ( b )  appears to be nearly 
symmetric, and the effect of the torsion seems to  have vanished. Although only a 
particular Dean number, D = 2000, is considered here, the finding of the diminishing 
effect of torsion as A / &  becomes small, say less than 0.1, holds generally true a t  other 
Dean numbers as well. 

In  addition, two more cases for A l e  = 0.1, and D = 2000 were also considered: for 
e = 0.3, h = 0.03 and for e = 0.1, h = 0.01. The secondary-flow patterns are found 
to  resemble closely those in figure 1 1  (b) ,  although the counter-rotating vortices in 
the case of e = 0.3 are stronger than those in figure 11 (b),  and those in the case of 
e = 0.1 are weaker. To avoid repetition the plots are not shown here. 

I n  the first part of this paper for small Dean numbers with E 4 1 and h 4 1, the 
controlling parameter, which determines whether a torsion can exert a li-order effect, 
was the ratio hl(2~):. However, if e is not small (say, 0.4 < E), nonlinear interactions 
become important, and a torsion with a relatively small h / ( 2 ~ ) 1 ( = 0 . 1 )  can still cause 
a substantial distorsion in the secondary flows. Two examples have been given to  
demonstrate this circumstance: one is for a small Dean number in figure 7 and the 
other is in figure 9 (b).  I n  order to see what a relatively large ratio can do to the flow 
field a t  D = 2000, we consider two additional cases and depict the results in figure 
12. It turns out that  the disposition of the vortices in the secondary flow in this case 
(figure 12a) is almost completely different from the usual symmetric shape. The lower 
vortex is so prevalent as to squeeze the upper vortex tightly in a. narrow region with 
a poorly defined vortex core. This situation is almost similar to the single-vortex cell 
shown by Wang (1981). 

At first glance it may appear that  the secondary flow in figure 12(a) is nearly all 
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Vector plot of the secondary flow. (a) D = 2000, E = 0.2, h = 0.05 (numerica 
solution). ( b )  D = 2000, E = 0.2, A = 0.02 (numerical solution). 

rotating in a clockwise direction and the total vorticity has a large negative value. 
This turned out to be not the case. I n  fact if the vorticity is integrated out through 
the computational domain, the total value is nearly zero, as it  should be in accordance 
with Stokes’s theorem. 

Between the two counter-rotating vortices there should be a dividing streamline, 
though its position in the present example is not easily discernible. Nonetheless it 
is twisted, shifted upward, and situated mostly in the third quadrant. As a result 
the axial velocity contour lines are also distorted and shifted in the same direction. 
This is illustrated in figure 1 3  (a) .  

Next we consider a case with h / ( 2 ~ ) 4  = 0.25, whose calculated results are displayed 
in figures 12(b) and 13(b). Although no special feature appears in these plots, they 
are included here for the purpose of filling the gap between hl(2e): = 0.5, and 
A / ( ~ E ) :  < 0.1, which are the values for the examples in figures 9-11. 
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FIGURE 12. Vector plot of the secondary flow. (a) D = 2000, E = 0.05, A = 0.158 1 1  (numerical 
solution). ( b )  D = 2000, E = 0.2, A = 0.158 1 1  (numerical solution). 

It is now fairly apparent from the axial velocity contour plots in various figures 
that these contour lines, though distorted, are not much different from the corres- 
ponding symmetric ones. As a result, the flux ratio in helical pipes is expected to  be 
approximately equal to  that in curved pipes at the same Dean number. However, 
it has been found that the former ratio is always slightly larger than the latter. This 
means that the flow resistance in a helical pipe is slightly smaller than the flow 
resistance in a curved pipe for the same Dean number. Although this property has 
been noted previously for small Dean numbers, it has not been shown for intermediate 
values. To this end we give two examples to demonstrate this circumstance : 

Q 
QS 
- = 0.5186 at D = 2000, E = 0.2, h = 0 (curved pipe), 

- = 0.5192 at D = 2000, c = 0.2, h = 0.05 (helical pipe). 
QS 
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FIGURE 13. Contour lines of the streamwise velocity component corresponding to the two cases 
in figure 12. ( a )  D = 2000, B = 0.05, A = 0.15811 (numerical solution). ( b )  D = 2000, E = 0.2, 
A = 0.158 1 1  (numerical solution). 

The difference between these two ratios is rather small in this case. It will however, 
become slightly larger if the torsion or curvature is somewhat greater. 

Dennis & Ng (1982) and others have discovered by means of the series truncation 
or other methods that there exists a second family of solutions in a curved pipe of 
D > 956, in which the secondary flow has a two-pair vortex structure instead of the 
usual one pair. It was thought that  an additional parameter A in the governing 
differential equations might make i t  possible to  attain the dual solutions by the 
conventional finite-difference method without recourse to  less familiar techniques. 
An attempt was therefore made to solve the existing system of finite-difference 
equations by giving initial conditions similar to the second family of solutions shown 
in Dennis & Ng’s paper. However, all two-pair vortex solutions after a sufficient 
number of iterations always returned to  the one-pair structure. Thus, i t  seems that 
the dual solutions, if existing in a helical pipe, may have to be obtained differently 
as for the case of curved pipes. 

The author wishes to thank W. Y. Soh for many discussions about perturbations 
and curved pipes. 

Appendix A 

a helical pipe in dimensionless variables are 
The equations of motion for a steady incompressible and fully developed flow in 
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sin(B+#)- aw 1 au 
W+#) a(@+#) -h€(2€)hJ2 [cos (8+#)-- 

Here (A 1)-(A 3) are the continuity, axial momentum and vorticity transport 
equations respectively. D denotes the Dean number and 

1 
w =  

i + s r  cos(e+#) '  

A modified stream function $ is introduced: 

h 
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to replace the continuity equation. With the aid of $ and the definition of 52 (see 
(7)), we can express 52 in terms of $ and w as follows: 

This equation together with (A 2) and (A 3) are then the governing differential 
equations. The boundary conditions at r = 1 for this system are 

where the quantity a v p r  is evaluated at r = 1 according to the three-point backward- 
difference formula after v is determined. 

Appendix B 

” = 320 x 576 

’ (1.9688 r-0.6505 r3-0.1926 r4 x sin 2a + 
+ 0.2006 re - 0.07407 r8 + 0.01667 r10 -0.00221 r12 + 0.000 lW4) 

x cos a+ ’ (0.69529 r+2.4420 r3-4.675 r5+4.0559 r7-2.0986 rB 

+0.65595 r’l-0.11402 r13+0.00778 r15) sina, 

(1.3412 r2-3.0982 T4+q re-& re+& rl0-$ r12+& r14) 

320 x 576 

320 x 576 

(-3.67768+19 r2-yr4+49.5  r 6 - e r 8  
1 

w -  
- 40 x (576)2 

+ 15.7 rlo-Y r12+$ r14-& rle) 

(25.8924r2-w r4+% re-24.7 re+= r l o - ~  r12+= 280 441 16 
‘40 x (576)2 

x cos 2a + ’ (-0.4359r+1.07104r3-l.1335r5+0.7541 r7-0.3518 r9 

+0.1195 r1’-0.0266 r13+0.003403 r15-0.00017 r17) 

x cosa+ ’ (0.3572 r-0.2917 r3-0.7704 r4 

+0.03289 r5+ 1.3579 re-1.0321 r8 

+0.4481 r10-0.11868 r12+0.01783 r14-0.00106 r16) sina. 

320 x 576 

320 x 576 
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